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Computing power and the data it generates is growing exponentially. In another decade new 
companies and companies we already know will have global reputations established through 
data analytics businesses. This unprecedented growth in data will result from ubiquitous 
sensors, an ‘Internet of Things’, that will monitor and measure our machines, our businesses, 
our environment and us. Big data will be everywhere - large volumes of different types of data 
moving at speed through a digital ecosystem. To compete in this new landscape, companies 
and countries alike must learn to master big data, or they will fi nd themselves out thought, out 
fl anked and out dated. 

The Lloyd’s Register Foundation will need to understand and master big data. The new scale 
of data availability will change all the strategic sectors in which it supports work. They will 
be changed because data will feature in all aspects of the business life-cycle; from design to 
manufacturing, maintenance to decommissioning. Data will be used to predict and anticipate, 
plan and decide every aspect of the 21st century workplace. This Foresight Review of Big Data, 
commissioned by the Foundation, provides a deliberately broad view of the impact of big data. 
It describes technical, organisational, social, and legal implications of living in a world of data. 
It presents a framework for the Foundation to think about its future - a future based in data-
centric engineering.

The report reviews large-scale data analysis and describes big data methods, techniques and 
solutions. It provides a number of accessible examples that indicate how and why big data is 
making a difference here and now, including in weather forecasting and the transportation and 
energy sectors. 

There are many perspectives on big data that need to be appreciated by those seeking to 
innovate responsibly. Big data is an asset and needs to be understood within the value chain of 
an organisation. It imposes demands on infrastructure and on humans. Big data needs analytics; 
not only the techniques of statistics and machine learning, but also the human skills of insight 
and pattern recognition to fi nd genuine meaning in the data. Big data can be complex to 
analyse because it comes in many varieties, shapes and sizes and may have been collected over 
different timescales. It can be uncertain, noisy, and incomplete. Collective responsibility and 
action by citizens, governments and businesses will be needed to realise the potential that big 
data offers.

The report asserts that to really embrace the opportunity that big data offers the Foundation, 
it needs to adopt a view that we term data-centric engineering. Data-centric engineering, 
recognising the value of data as an asset in itself, puts data considerations at the core of 
engineering design. It improves performance, safety, reliability and effi ciency of assets, 
infrastructures and complex machines. From cradle to grave, design to decommissioning, big

Executive summary
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data analytics will feature at all phases of the life-cycle of engineered systems, and will inform 
new developments as part of an iterative process. Analytics will create value from a wide range 
of data, informing not only asset and machine performance but linking these to the physical, 
economic, social, and human environments in which they sit. 

We have produced a set of recommendations based on this view and the context already 
described.

The Foundation should take a prominent role in promoting data-centric engineering. Working 
with others it could provide a roadmap of what this approach requires; the technology 
development, policy making and business models that underpin it. The Foundation is well-
placed to support the innovative methodology outlined in this report within a number of 
engineering domains.

At the heart of the proposed methodological approach for data-centric engineering is 
the responsible handling of decentralised data assets. The Foundation should catalyse 
entrepreneurship in the data ecosystem by supporting innovative ideas and business models in 
its strategic sectors.

The independent role of the Foundation also establishes its suitability as an authority informing 
regulation and standards. The Foundation can take the leading role in formulating the codes, 
standards, regulation and sector-specifi c terms of use for data. Together with clear requirements 
and guidelines for continuous capture of data provenance, this is the basis for accountable 
and trusted data-driven supply chains. The Foundation should support data certifi cation 
services for the new class of data assets that will be central to safety and security in 21st century 
engineering. In complex engineering we also need certifi cation for the analytical methods and 
predictive models that are applied to data. Working with organisations such as the Open Data 
Institute the Foundation should support consultancy and data certifi cation products in this space.

The production of data catalogues and inventories, and the ability to fi nd these assets on 
the web is an essential part of data engineering and the big data landscape. The schema.org 
initiative is a successful example of technically lightweight data integration at web-scale that 
supports data discovery. The Foundation should support data catalogues, data vocabularies 
and data discovery methods to support its strategic sectors. It should support the provision of 
reliable, long-term resource identifi ers for data assets.

The Foundation has to constantly engage in horizon scanning to ensure it anticipates correctly 
developments that could dramatically change how computing and data analytics is performed 
in the future.



Lloyd’s Register Foundation3 

Lloyd’s Register is built on data. The fi rst Register, issued in 1764, provided data on ship 
quality and analysts of the day used this data to understand and manage shipping risks. 
Modern infrastructures are far more complex: advanced construction, complex supply chains, 
networked operations and human interventions, all set within a fast evolving technological 
environment, provide huge challenges for those seeking to assure safety. Big data and 
advanced analytical tools will address these challenges.

From cradle to grave, design to decommissioning, big data analytics will feature at all 
phases of the life-cycle of engineered systems, and will inform new developments as part 
of an iterative process. Analytics will create value from a wide range of data, informing not 
only asset and machine performance but linking these to the physical, economic, social, 
and human environments in which they sit. This comprehensive view of data in engineered 
systems is why we have subtitled this report ‘towards data-centric engineering’. It sets the 
agenda for the steps that need to be undertaken for a fundamental paradigm shift and 
describes the role of the Lloyd’s Register Foundation in making this happen. 

The future value of big data will only be realised if there is organisational and cultural 
change, accompanied by appropriate analytical tools, skills and practices. The UK 
Government Chief Scientifi c Adviser recently called for the creation of a ‘National centre 
to promote advanced research and translational work in algorithms and the application 
of data science… to enable researchers from industry and academia to work together to 
undertake outstanding research with practical application’1. Such a centre could provide a 
useful focus to further develop the concepts in this report.

This report describes how big data can bring the societal benefi ts that are at the heart of 
the Lloyd’s Register Foundation’s mission, enhancing safety by fundamentally changing 
the design, manufacturing, maintenance and decommissioning processes for complex 
infrastructures and machinery. It will help the Foundation understand where it can make 
a distinctive contribution to the developments in big data, in pursuit of its charitable 
objectives, because life matters.

Foreword

Professor Sir Nigel R. Shadbolt 
Professor of Artifi cial Intelligence
University of Southampton and
Chairman of the Open Data Institute

Professor Richard Clegg 
Managing Director 
Lloyd’s Register Foundation

1 https://www.gov.uk/government/uploads/system/uploads/attachment_data/fi le/224953/ 
  13-923-age-of-algorithms-letter-to-prime-minister_1_.pdf



Foresight review of big data 4



Lloyd’s Register Foundation5 

This report is the second in a series commissioned by the Lloyd’s Register Foundation as part 
of its emerging technologies research theme. It looks forward at how developments in the 
area of big data might impact the safety and performance of the engineered assets and the 
infrastructures on which modern society relies. 

The Lloyd’s Register Foundation is a charity and owner of the Lloyd’s Register Group Limited 
(LR). LR is a 254 year old organisation providing independent assurance and expert advice 
to companies operating high-risk, capitally intensive assets primarily in the energy, maritime 
and transportation sectors. It also serves a wide range of sectors with distributed assets and 
complex supply chains such as the food, healthcare, automotive and manufacturing sectors.

Building on the fi ndings of this review, the Foundation will look to identify aspects of big data 
that might provide opportunities or threats to safety in line with its charitable objectives, and 
where the Foundation might focus its research and other grant giving to make a distinctive 
positive impact.

The Foundation is a charity with a global role. Refl ecting this it assembled an international and 
cross-sectoral expert advisory panel which met in London in July 2014. This report contains the 
output and fi ndings from that panel.

Background 
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Introduction to 
big data

Computing power and the data it generates is growing exponentially. In another decade, 
computer storage densities will be 1,000 times greater, the data generated will be measured 
in zettabytes, which is a thousand billion gigabytes. Companies we know well, and others 
we have not yet thought of or heard of, will be global players in the fi eld of data analytics. 
This trend to generate more and more data will result from ubiquitous sensors, an Internet 
of Things2 that will monitor and measure our machines, our businesses, our environment and 
us. Big data will be everywhere - large volumes of different types of data moving at speed 
through our digital ecosystem. Its veracity and quality may sometimes be in doubt but unless a 
company, an organisation or a nation state has learnt to master big data it will very rapidly fi nd 
itself out thought, out fl anked and out dated. 

Big data is commonly characterised as having four dimensions: volume, velocity, variety and 
veracity. Data that is extraordinary in one or multiple of these dimensions - very large amounts, 
rapidly streamed, heterogeneous and/or uncertain – may be called big data.

Volume
(Scale of data)

Velocity
(Rapidly streamed data)

Variety
(Heterogeneity)

Veracity
(Uncertainty)

Big data

Figure 1: The four dimensions of big data.
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Large data volumes are an underpinning feature of many activities. ‘Big science’ projects: like 
the Large Hadron Collider or the Square Kilometre Array; the data silos and structured data3 
of large web companies such as Google, Facebook or Twitter; the enterprise data held by 
companies like IBM or big retailers like Walmart; all generate terabytes of data quickly and 
routinely. Figure 2 illustrates relative amounts of data for such activities.

2 https://www.gov.uk/government/collections/internet-of-things-review
3 Structured data is typically regarded as data that has an associated formal schema, for 
  example relational databases and data warehouses.

Twitter:
500,000,000 microposts 
per day       
       3.5 terabytes per year

Big data collection

Data collected by 
Google’s autonomous
car per second

Large Hadron Collider:
0.001% of sensor stream 
data from experiments
      25 petabytes per year

Square Kilometre Array:
highly accurate radio
telescope data
      350 exabyes per year

Daily data uploads 
to Facebook

Sensor data 
recorded on a 
six hour flight

eBay’s customer
transaction database 
for search and 
recommendations
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Figure 2: Examples of the scale of data collected
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Big data and the new techniques in the way we distribute complex computing problems4  
underpin many businesses and services, providing opportunities to connect businesses to 
individuals in real time. Associated legal and policy frameworks are needed to support 
effective use and appropriate data protection and assurance and individual citizens may need 
to increase their understanding of their own rights and liabilities when data is collected, 
consumed or exposed5. But big data can bring huge benefi ts to citizens and the UN has 
identifi ed its transformative potential to bring sustainable development to disadvantaged 
communities6.

Increased use of big data has been underpinned by technological developments allowing us 
to better and faster generate, store, process, understand and visualise data. Technological 
advancements in automated sensing systems and user-generated inputs7 are producing new 
data. Communications and computing technologies are underpinning development of near 
real-time applications, and policy interventions such as open standards and open data are 
supporting better access by those who can innovate. 

Advanced sensor technologies are increasingly used on individual machines, machine 
components and across complex, interconnected machine systems producing a rich range 
and large volume of data. The analysis of the resulting big data has the potential to increase 
effi ciency, reduce costs, improve reliability and productivity and enhance safety.

Big data underpins well known services such as the weather forecast, but has also enabled 
rapid growth of many novel applications, for example in the transport and energy sectors.

4 New techniques allow distribution of complex computing problems to powerful new 
  hardware and software solution, for example MapReduce and Hadoop.
5 IBM. Ethics for big data and analytics, 2014, http://www.ibmbigdatahub.com/whitepaper/
   ethics-big-data-and-analytics 
6  A World that Counts: mobilising the data revolution for sustainable development, 2014 
  http://www.undatarevolution.org/report/
7  For example smart meters and mobile devices.
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Example 1: The digital oil fi eld
Energy companies are increasingly integrating data and other asset information to improve 
workfl ow management, visualisation, monitoring, control, analytics and communications 
of their operations. Large seismic data sets, combined with powerful pattern recognition 
and rapid analysis, support exploration. Drilling data is streamed in real-time from the drill 
string and surface equipment throughout the drilling of a well. The industry is increasingly 
looking to automate these dangerous and expensive operations. Real-time analytics improve 
safety and effi ciency, avoid equipment failures and provide geological information for critical 
decision support. Live data from producing and injecting wells across large oilfi elds allow the 
use of automated systems to quickly compensate for equipment failures or other incidents, 
balancing pressures to ensure maximum hydrocarbon recovery. Meanwhile techniques such as 
computational fl uid dynamics (CFD) are used to improve production by modelling the complex 
downhole interactions between production equipment, the stressed reservoir rock and injected 
and produced fl uids. 

Figure 3: The image shows tracked particle velocities as gas carrying sand particles move 
from below up through the choke (a control on liquid fl ow) and on in to production system. 
The green represents higher velocities and the blue lower velocities. This modelling using 
CFD enables erosion risks in wells and production systems to be identifi ed. Figure courtesy 
of LR Senergy.
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Example 2: Weather forecasting 
The daily weather forecast uses modelled and observed data from sensors, satellites, and 
in situ measurements, describing a large number of physical parameters such as barometric 
pressure, air and sea surface temperature, wind speed and direction, air moisture and terrain 
elevation. Very high performance computers are used to process huge amounts of data in 
near real time providing weather predictions and visualisations over different temporal and 
spatial scales. Advances in computational power and high resolution sensing have brought 
great improvements in forecast accuracy. Such improvements have brought huge benefi ts for 
individuals, businesses, and society, saving lives and property. From providing warnings for 
short-term events such as wind storms and fl oods to supporting long-term decisions on building 
and infrastructure design, the safety benefi ts of this big data application are unparalleled. 
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Figure 4: Ensemble forecasting uses large complex observed datasets and creates massive 
modelled datasets to predict the probability of different future weather events. The fi gure 
shows six out of fi fty ensemble outputs, and the resulting ‘most likely’ forecast, predicted four 
days before the storms that hit the UK on 24 December (Christmas Eve) 2013, leaving 75,000 
homes without power. The forecast shows pressure (contours) and precipitation (shades). 
Credit ECMWF.
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Example 3: Transport 
Big data methods open up new possibilities in transport sectors. For example, substantial 
data is already collected during the normal operation of rail rolling stock. Figure 5 illustrates 
the potential for data collection and analysis at different organisational scales of this system. 
Should all data be collected? How much local processing should be done? Can condition be 
assessed locally or by comparison between similar vehicles? Big data analytics can support 
systematic understanding to help in the development of new types of vehicle and fl eet models, 
and management and design activities. Fleet data analytics also have applications in the road 
haulage, maritime and aviation sectors.

Component
•  Detoriation and failure

•  Detoriation and failure
•  Off-design operation

•  Efficiency    
•  Cleanliness
•  Variance      
•  Off-design operation 

•  Safe operation  
•  Efficiency
•  Cleanliness       
•  Patterns  of behaviour

•  Economic impact
•  Assessment of environmental policy

•  Safe operation 
•  Usage patterns
•  Maintenance, fuel performance
•  Driver assessment
•  Efficiency

Sub-system
(e.g. turbocharger)

System
(e.g. engine)

Vehicle
(e.g. locomotive)

Fleet

Nation

100 X

10 X

50 X

5000 X

10 X

Figure 5: Data can be collected and analysed at multiple scales within a rail fl eet. 
Credit: Richard Stobart. 
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Example 4: The smart grid 
Smart grid technologies support intelligent management and analysis of the electrical supply 
based on massive amounts of sensed data, in near real time and at fi ne granularity. Smart 
grids draw on information such as behaviours of suppliers and consumers and aim to improve 
reliability, fl exibility, and effi ciency of the system. Big data is a ubiquitous theme in the 
research and development that has been undertaken to plan and realise this grand challenge 
for the power industry.

Perspectives on big data
There is no single perspective on big data. Big data is an asset and needs to be understood 
within the value chain of an organisation. It imposes infrastructure demands; hardware and 
software, human as well as physical resources. Big data needs analytics, not only the techniques 
of statistics and machine learning, but also the human skills of insight and pattern recognition 
to fi nd genuine meaning in the data. Big data can be complex to analyse because it comes in 
many varieties, shapes and sizes and may have been collected over different timescales. It can 
be uncertain, noisy, and incomplete. Finally, to realise the potential that big data offers will 
require collective responsibility and action by citizens, governments and businesses. Appendix A 
provides further detail on these perspectives.
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Data-centric engineering puts data considerations at the core of engineering design. It 
improves performance, safety, reliability and effi ciency of assets, infrastructures and complex 
machines. From cradle to grave, design to decommissioning, big data analytics will feature at 
all phases of the life-cycle of engineered systems, and will inform new developments as part of 
an iterative process. Analytics will create value from a wide range of data, informing not only 
asset and machine performance but linking these to the physical, economic, social, and human 
environments in which they sit. 

Data standards, generation, capture, annotation, storage, analysis, visualisation, security and 
ownership will increasingly become key parts of the modern engineering life cycle, signifi cantly 
changing how design, manufacturing, maintenance and decommissioning of complex machinery 
and other assets will be carried out in the future. Data-centric engineering recognises that data is 
an asset and so there are two, co-crafted outputs from the data-centric engineering process, the 
physical asset and the digital asset. 

Decentralised data ownership poses challenges to analysis and is a problem for some business 
models, but in engineering, data exchange, interoperation and analysis can lead to improved 
asset function and add enormous value. Intellectual property ownership will be a barrier to 
accountable, trusted, and controlled cross-company data infrastructures if mechanisms for rights 
management are not included at the design stage. But if these barriers can be overcome in 
engineering, it has the potential to bring positive disruptive change to other business models, 
sectors and society at large.

Condition-based maintenance
Advanced tagging technologies and smart materials will turn machines and vehicles into smart 
products with memories of each part’s production and operation history. There will be a move 
away from fi xed maintenance intervals, towards tailored predictive maintenance, reducing 
operator risk and providing better cost-effi ciency. Predictive models will be based on in situ 
data collection and preferably performance data from multiple generations of design. 

Big data and analytics can support maintenance planning and optimisation, and operational 
planning and deployment. For example machines such as ships and trains need to plan 
maintenance services at the right time and place. Routes might be adapted dynamically to do 
this effectively. Small errors or unexpected maintenance stops may have very large knock-on 
effects within the larger network, so it is important to consider how to build resilience into 
decision support systems.

Data-centric engineering: implications 
for engineering-related disciplines 
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Advances in autonomous vehicles will impact machine-intense sectors such as mining. Humans 
will be taken out of the loop of actual operations and instead will become critical for rapid 
data-centric decision-making. This will change the skill set needed for operating complex 
machinery. And advanced data literacy will increasingly be a requirement in occupations 
operating complex machines and systems. 

8 http://www.news-sap.com/industry-4-0-two-examples-future-factory/ 

Smart factories and autonomous machines
Future factories8 will also be characterised by ubiquitous sensing and data-intense interaction 
with smart materials, products and machines. Planning from manufacturing to operational 
deployment will become highly interactive and individualised, facilitating changes in 
conditions along the supply chain. Smart materials and products will carry memories of their 
manufacturing history and plans for how they are meant to be processed next. Condition-
based maintenance systems in the fi eld will provide feedback into the production pipeline. The 
manufacturing of customised replacement parts will become responsive to actual requirements 
and allows for near real-time re-planning of production.
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Data-enabled prosumers and the quantifi ed worker
Individuals are increasingly generating data relating to individual behaviour and performance, a 
movement often termed the ‘quantifi ed self’. The further development and broader distribution 
of wearable sensors, smart watches and even smart glasses will impact how we live privately and 
how we work professionally, turning us into ‘data-enabled prosumers’9. Sensing vital signs could 
increase worker security and well-being by decreasing the risk of critical failures due to fatigue 
or illness. User interactions with products and services will directly affect design and increase 
personalisation. Working environments will become much more organic by exploiting network 
effects of the individual demands of employees and varying requirements of reliable provisioning 
of services or delivery of products. The working individual, their employers and wider society 
could all benefi t from this. Unprecedented fl exibility, personalisation, and empowerment will 
revolutionise traditional work environments and change how work can be aligned with personal 
considerations such as caring responsibilities, ill health and ageing. 

There are complex ethical and legal issues associated with such new approaches. Personal 
data can be used on behalf of workers to uncover workload and stress issues. Conversely 
employers can use this type of information to measure workforce productivity and identify 
underperformers. Sensitive brokering between employers, employees and unions will be 
required to deliver safety benefi ts in this fi eld. 

9  Toffl er, Alvin. The third wave. New York: Bantam books, 1981.
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Scale and uncertainty
One challenge from big data arises from heterogeneous modes of data sensing and sampling. 
Discrete data contrast with the continuous nature of the problems being tackled and many 
current mathematical and algorithmic approaches fail to deal with this. This is particularly 
prevalent in applied research, where the need to integrate results from the methodologies of 
disparate analytical fi elds often requires integrating levels of analysis that were not designed 
for co-analysis. Sparse data, even if sampled at very high rates, can also cause analytical 
problems such as coverage bias and may lead to important signals between samples being 
missed. New modes of sampling and approaches to modelling are ongoing challenges for big 
data and its underlying science. Similarly the problem of representing or modelling uncertainty 
in data requires handling random or statistical uncertainties, for example arising from 
measurement inaccuracies and data sampling problems, and also biases and uncertainties in 
data collection. To overcome such issues, which are important in the validation of data mining 
and machine learning, new models of abductive reasoning that attempt to generate and test 
hypotheses automatically need to be developed. 

Data and cybercrime
Data misuse, unauthorised access to data and other data crimes are emerging issues. But more 
subtle misuses of data do not require access to secure data infrastructures, for example fake or 
abusive reviews, statements to discredit people and other kind of misleading information. 

The European Union Agency for Network and Information Security (ENISA) published a 
comparative study on the cyber crisis management and the general crisis management in 
November 2014. The report lists six key recommendations:
1.  Develop a common cyber crisis management glossary.
2.  Gain further knowledge regarding cyber crisis management.
3.  Initiate activities for enhancing the knowledge on cyber crisis management.
4.  Support training and exercises in the fi eld of cyber crisis management.
5.  Support development and sharing of strategic cyber crisis management procedures.
6.  Enhance information sharing and collaboration between private and public organisations.

The resilience of complex engineering supply chains against cyber attacks will be an important 
feature of cyber crisis management of the future. Cyber security is an important consideration 
for the engineering sector going forward.

Big data: challenges and risks
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Big data risks and effects
The two previous examples illustrate risks at the analytical and the infrastructural level. 
Table 1 summarises this and sets it in context with examples of industrial areas that are 
particularly affected by certain risks, although this cannot be exhaustive.

Big data reference Description of potential risks Example affected industrial area

Data integration 
technologies

•  private data revealed by
   ‘mosaic’ of supposedly
    anonymised datasets
•  incompatible data standards and 
    reference data causing correlation 
    errors

•  healthcare, transport, utilities
•  consumer services
•  world wide web

Correlation/causation 
diffi culties

•  data analytics without e.g. proper 
    uncertainty quantifi cation can lead
    to signifi cant false positive results 
    (i.e. implied causalities)
•  over attribution of propensities 
    that are not necessities

•  insurance and classifi cation 
    industries
•  healthcare
•  government and policy

Collection biases •  assuming data is predictive of a
    larger, unbiased cohort when it 
    is not representative

•  economic modelling
•  consumer prediction
•  business analytics

Autonomous machines •  vulnerability of machines to cyber
    attacks leading to unlawful control
•  terrorism
•  piracy

•  transport
•  energy
•  marine
•  mining
•  aerospace

Data quality •  data insertion, updating or deleting 
    by unauthorised individuals
•  obsolete or incomplete data sets

•  all

Table 1: Potential big data related risks and affects.



Foresight review of big data 20

The Expert Panel highlighted the central and independent position of the Lloyd’s Register 
Foundation from which it can provide leadership to address challenges, some of which are not 
yet fully appreciated in an age of data-centric engineering.

Current widely visible and successful examples of data-intensive solutions exploiting big data 
are driven by large web companies. But there is huge potential in tapping into developments 
and initiatives that have been successful on the open web. Revisiting or adapting them in the 
context of complex engineering disciplines is a very promising opportunity, even in sectors for 
which the transition from strictly linear models to highly interconnected network ecosystems 
are still ongoing or have not yet even started.

Catalysing data-centric engineering
The Expert Panel identifi ed a central opportunity for the Foundation to drive the adoption of 
data-centric methodologies in complex engineering. It will become increasingly important to 
examine data infrastructures involving multiple stakeholders including the data publisher and 
the consumer. It will require multiple perspectives; methodological, technical, and legal points 
of view, and will require development of data-centric engineering codes and standards.

The Expert Panel identifi ed the following technical and non-technical challenges relevant to 
this overall goal.

Technical challenges
Heterogeneous and multi-modal data
As a result of pervasive sensing at the machine, environment and worker level, every 
infrastructure has the potential to generate enormous amounts of data. This data is composed 
of user-generated content (e.g. traces of digital communication) and machine-generated 
content (e.g. data collected by sensors), complemented by structured data from external 
sources (e.g. open government data about environmental conditions or policies).

If a sensor delivers a data point then we have to consider if it is consistent with other data 
- perhaps the time periods are different, the units used are different, the types of modality 
sensed are different (text, audio, imagery), the way metadata (data about the data) is 
represented is different. The discovery, alignment and integration of this heterogeneous and 
multi-modal data is a critical step preceding its analysis.

Big data: implications for the 
Lloyd’s Register Foundation
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Data needs to be transparently aligned at the schema level but also at the level of units and 
measurement precision. This becomes a challenging task in integrated systems that cross 
multiple sectors with a plethora of custom services and without comprehensive international 
standardisation. Initiatives on the world wide web, such as the linked data principles10, 
show how carefully designed recommendations and best-practices for data publication and 
exchange help to lower the barriers for large-scale and cross-sectoral data integration. 

These recommend such things as the adoption of persistent, globally unique identifi ers for 
instance data, schema entities and relationships, the adoption of access to data via a common 
protocol, and a standard format as to how the accessed data should be represented and 
interlinked. They are the foundations for interoperability without the need for heavyweight, 
burdensome international service-level standardisation. It is an approach that has had dramatic 
success in the case of the internet and world wide web, informed by the abstract notion of 
dataspaces11, the decentralisation of data ownership and control and shared effort to provide 
services for data discovery and integration between data publishers, data consumers and third 
parties. 

There are a large and continuously growing amount of open data sources worldwide (e.g. 
open government data12), but not all open data sources are yet published to a high standard. 
For linked data the standards and guidelines are in place and there has been signifi cant uptake 
and conformity. This demonstrates the impact that a light touch approach can have at a global 
scale and within a highly dynamic context. The Open Data Institute13 is the blueprint for 
catalysing the further growth and sustainable establishment of an open data culture. It offers 
consultancy, development, startup incubation, training, and data certifi cation for companies, 
governments, journalists and other stakeholders that work with open data.

10 Heath, Tim, and Bizer, Christian. Linked data: Evolving the web into a global data space. 
   Synthesis lectures on the semantic web: theory and technology 1.1 (2011): 1-136.
11 Franklin, Michael; Halevy, Alon; Maier, David. From databases to dataspaces: a new abstraction
   for information management. ACM Sigmod Record 34.4 (2005): 27-33.
12  http://data.gov.uk
13 http://theodi.org
14 http://schema.org
15 http://videolectures.net/iswc2013_guha_tunnel/
16  Uniform resource identifi ers – a world wide web standard
17 Tiropanis, Thanassis, et al. The Web Observatory: A Middle Layer for Broad Data. Big Data
   2.3 (2014): 129-133; and Tiropanis, Thanassis, et al. The web science observatory. IEEE Intelligent 
   Systems 28.2 (2013): 100-104.
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The schema.org14 initiative was jointly started by competing search engine providers in 2011. 
It set the standard for describing data on the web, fi rst and foremost for eCommerce but 
increasingly other domains. eCommerce is a highly competitive sector where the stakeholders 
often seek to avoid comparability and are often reluctant to agree on service-level standards 
because this might threaten their business models. Nevertheless, the benefi t of simplifi ed 
discovery of product offers on the web has overcome the reservations and concerns of competing 
companies. Recent statistics indicate 15% of all web pages have schema.org mark-up15.

Linked data uses identifi ers16 that work at web scale to connect islands of data 
together. There are good examples in areas such as news and media and eCommerce; 
examples from engineering disciplines are rare. An initiative comparable to shema.org 
has not been effectively developed. The Foundation, as an independent organisation 
with charitable aims, could provide leadership to launch such an initiative.

A recent direction in data analysis is web observatories17. The goal is to build a 
distributed infrastructure for the exchange and use of research data and analytical 
methods. The approach leverages web standards and simple best practices in order 
to achieve transparent data access and interoperability at very large scale. Web 
observatories expand this to the sharing and retrieval of analytics in order to increase 
the reproducibility of data-intensive research. The opportunity for the Foundation’s 
strategic sectors is to adapt the web observatory concepts and best practices for trusted 
data exchange infrastructures in engineering. 
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Data analytics
The development of new methods and tools as well as technical capabilities for big data 
analytics is highly dynamic driven by academia and large companies. In everyday practice there 
are only a few examples of well-established models, such as the analytics underlying weather 
forecasting. While these models need to be adjusted as computational and sensing capabilities 
advance and the volume of processable data increases, applications do not have any reference 
models that have been proven to work reliably. 

Interconnected ecosystems
In most modern societies every single component is part of one or more complex interdependent 
networks of humans, machines, and environmental infrastructures. The production and delivery 
of food, from the harvesting of the raw ingredients to its consumption, exemplifi es how the 
macro-scale ecosystem of our planet breaks down into many micro-scale ecosystems, systems 
that people, machines and goods traverse and interact with dynamically. Ubiquitous sensing 
enables unprecedented access to the digital traces of these ecosystems. Interdisciplinary work 
between theoreticians and practitioners in complex systems, computational modeling and 
various engineering-intensive sectors is required to understand the cascade effects of risks, 
benefi ts and liability. 

There is a signifi cant potential for the Lloyd’s Register Foundation to stimulate work 
with large datasets from the shipping and energy sectors, which are unavailable to 
researchers at the moment. Sectors such as meteorological services are equipped with 
public institutions with partial legal capacities (e.g. the Deutscher Wetterdienst18) 
and associated laws19 to provide reliable information and research that meet the 
requirements of the economy and society. In the big data age many other sectors need 
similar capabilities. The Foundation is ideally placed to promote opportunities and to 
tie together national approaches at an international level.

18  http://www.dwd.de/
19  http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KUPK/Wir_
   ueber_uns/Gesetz_PDF_en,templateId=raw,property=publicationFile.pdf/Gesetz_PDF_en.pdf
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The Lloyd’s Register Foundation strategy targets the promotion of supply chain resilience. 
The previous examples show that big data enables and expands the view from linear 
interdependence to complex networked systems. Consequently, interdisciplinary research 
on the structure and behavioural effects in interconnected ‘ecosystems’ as well as non-
linear value models will impact the Foundation’s future business and strategic sectors.
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Non-technical challenges
Data certifi cation
Certifi cation is a measure of how well a standard has been implemented. It provides consumers 
with reliability in terms of machine and service capabilities and allows operators and providers 
to be held accountable.

Data certifi cation is concerned with metadata that describes what is in the data, who created 
it, for what purpose, what is the quality of data, and what value arises, among other possible 
objectives. This metadata can be very generic and coarse but it might also be necessary to 
record fi ne-grained continuous provenance20  about how data is used and changed. 

The W3C (World Wide Web Consortium) recommendation entitled PROV-DM: The Provenance 
Data Model defi nes provenance as ‘a record that describes the people, institutions, entities, 
and activities involved in producing, infl uencing, or delivering a piece of data or a thing’21. 
Provenance is metadata that allows us to re-trace the entire history of a primary piece of data 
from its creation, through all the uses and changes it underwent up to the deletion of the data 
object. Depending on the level of detail to which provenance is represented, it is possible to 
infer which system stakeholder (e.g. a person or a system/system component) was involved 
in a particular activity that has been performed with or on the data. In order to develop 
accountable and trustworthy big data applications it is necessary to complement provenance 
with methods to express what can be done with data - so called data terms of use - and to 
enforce provenance rules at the right level.

A successful example of data certifi cation is the open data certifi cate22 developed by the Open 
Data Institute. Provided for data publishers and data consumers it describes what an open data 
asset is about, its intrinsic quality and how to access it. Information like availability, privacy, and 
licensing are assessed and result in the granting of a certifi cate on a tier from raw, to pilot, to 
standard, to expert. This four-tier scale refl ects the characteristics of an open data source so 
users can decide how much to rely on it.

Big data not only involves data but also the analytical and predictive methods applied to 
it. Due to the critical and security-relevant impact these methods have, as in preventative 
maintenance for example, it is necessary to complement the certifi cation of data with 
certifi cation of the entire processing chain it runs through. In this scenario particular issues of 
accountability and data ownership arise when it comes to the latent information derived from 
inference based on multiple big data sources.

20  Moreau, Luc, and Groth, Paul. Provenance: An Introduction to PROV. Synthesis Lectures on
    the Semantic Web: Theory and Technology 3.4 (2013): 1-129.
21  http://www.w3.org/TR/prov-dm/
22  http://certifi cates.theodi.org
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Basic opportunities and questions for the Lloyd’s Register Foundation relate to what 
data is certifi ed and also for how long it should be curated. The Foundation’s strategic 
sectors have not been provided with clear guidelines of how operational analytics can 
be assured, especially in energy and transport scenarios, in which big data is heavily 
implicated. Consequently the certifi cation of data assets needs to be embedded in a 
holistic approach to certifi ed data-centric supply chains. The Lloyd’s Register Foundation 
could play a pivotal role in the adoption of data certifi cation and the certifi cation 
process itself.

The Foundation can also benefi t from the momentum of the Open Data Institute 
initiative by supporting it in complex engineering sectors in order to promote the basic 
principle of data-centric engineering – ‘design for data’.

Figure 6: An open data certifi cate endorsed by the Open Data Institute.
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A leadership position needs to be taken over social capital aspects of big data and in 
how big data business models are formulated, models that are not biased by individual 
interests of large web companies. The Lloyd’s Register Foundation is in a perfect 
position with sectors that cannot adopt the web companies’ business models directly 
due to regulatory issues and competition. This constitutes a signifi cant potential for 
achieving market-readiness of decentralised web applications backed up with reliable 
policies and business models in these sectors. This will impact the way value on the web 
is generated.

Data code and standards
The market of data-centric applications is evolving fast as shown by start-ups, which 
develop new web and smartphone applications for communication, social networking, 
information sharing, self-tracking, health monitoring or smart homes. The business models 
are typically centred around the analysis of user data to advertise and recommend products 
for purchase. The most successful start-ups are often acquired by one of the large players 
on the web, extending the centralised repositories of personal data.

While these business models are promising in terms of short-term monetary success even 
for very small start-ups they can be a barrier for disruptive innovation. The technological 
nature of the protocols and standards that constitute the world wide web allow for 
building completely decentralised applications that put the user in control of their data 
and break with the way web applications are currently built. However, decentralised 
applications with decentralised data ownership pose even harder questions to big data 
analytics and are thus less lucrative for rapid acquisition and revenue generation.
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In order to provide an overview of how big data will impact the core sectors relevant to the 
Lloyd’s Register Foundation, the table in this section sets out likely future developments in the 
energy, transport and marine sectors. It also anticipates wider societal and safety implications.

Big data: a future timeline

Table 2: Big data timeline.

Timescale Short term

0-5 years

Impact

Energy:
•  consumers assess and optimise energy consumption
•  demand management

Transport and marine:
•  dynamic non-linear processes for predictive and 
    preventative maintenance
  
Wider implications:
• connected data infrastructures

Applications

•  stream processing
•  smart energy meters
•  prediction of machine failures
•  broad publication of high quality open data by 
    governments as well as other public and private 
    entities
•  business and economic modelling
•  supply chain modelling (and failure prediction)
•  environmental modelling
•  semantic data integration

Scientifi c 
underpinnings

•  scalable and affordable in-memory data processing
•  application and fi tting of statistical and machine
    learning models to large amounts of machine data
•  standards and best practices for linked data 
    publication, quality assessment, repair and 
    consumption
•  semantic modelling, ontologies, web technologies
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Medium term Long term

5-10 years 10-20 years

    Energy:
    •  adaptive local energy generation

    Transport and marine:
    •  autonomous underwater exploration

    Wider implications:
    •  data enhanced science and engineering
    •  national and international policies and 
        guidelines to prevent and fi ght cybercrime

Energy:
•  smart grid optimisation

Transport and marine:
•  autonomous transportation and delivery

Wider implications:
•  personal health management

    •  question answering
    •  unstructured data analytics
    •  emergent open data ecosystems. 
    •  national information infrastructures
    •  life logging
    •  autonomous machines in controlled 
        environments

•  exabyte analytics at personal level
•  autonomous cars and drones
•  Internet of Things
•  smart city/ region/ nation information 
    infrastructures

    •  smarter sensing
    •  breaking the exafl op barrier
    •  data-centric eScience infrastructures and 
        processable publications
    •  web observatories
    •  coupling of data analytics with modelling 
        and simulation
    •  next generation human language 
        technologies

•  quantum computing
•  genomics coupled with large scale analytics
•  one-million fold increase in compute 
    power and continued improvements in 
    computation and memory
•  reactive machine learning in highly non-
    deterministic environments
•  signifi cant artifi cial intelligence
•  data analytics applied to nano-scale 
    components



Lloyd’s Register Foundation31 

This report concludes that global trends in big data technology are going to have a major 
impact on the sectors and charitable aims supported by the Lloyd’s Register Foundation. 
Within the next fi ve to 10 years we are going to witness step changes in sensor technology, 
autonomous intelligent systems, computer science and algorithms for data analysis. The 
impact of these will be felt across all the sectors, assets and infrastructure of importance to the 
Foundation, and across the whole of the product and process life cycles. 

Big data, in an engineering-related context, is going to bridge the gap from being able to 
monitor ‘what is’ to predicting ‘what if’ in near real time, creating value through potential 
enhancements in safety, reliability and performance of assets and infrastructure relevant to the 
Foundation. 

Within this timeframe of the next fi ve to 10 years, the Lloyd’s Register Foundation has a 
unique and immediate opportunity to become a recognised UK and international player 
in the engineering applications of big data. In this report we have coined the phrase ‘data-
centric engineering’ to describe this. Below are the Expert Panel’s recommendations on where 
the Foundation could invest in data-centric engineering, focused on where it could make a 
distinctive difference and maximise its impact and value for the wider benefi t of society. 

This report sets the high-level strategic direction and priorities for the Foundation in the fi eld 
of data-centric engineering, based on the collective opinion of the Expert Panel. Further work 
will be needed to decide the implementation details, down to the level of what individual 
projects to invest in and priorities. The global reach of the Lloyd’s Register Foundation is a 
great advantage and it benefi ts from working with the best research individuals and teams 
internationally in the fi eld. The Foundation’s approach, exemplifi ed in other research areas, 
is to establish a research hub that can be networked with international research centres 
possessing complimentary interests and capabilities. 

The Expert Panel’s main recommendations are summarised in the fi gure on the next page. It 
shows the four main areas relevant to the Foundation where it could take action and invest in 
data-centric engineering to make a distinctive impact. 

Findings and recommendations
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In summary, the four main action areas are: 

Technology roadmapping
There is a clear opportunity for the Foundation, working with other funding bodies, the 
research community, and stakeholders, to jointly construct a technology roadmap for data-
centric engineering. This would serve as a tool to help forecast technology developments 
and plan and co-ordinate efforts, would be a valuable contribution by the Foundation and 
provide a framework to promote collaboration. Appendix B provides further thoughts on 
potential collaboration partners.

Priority action areas

Technology road 
mapping

Design for data Codes and standards Data analytics

Horizon scanning Complex independent 
networks of humans, 
machines and the 
enviroment

Data codes and 
standards: quality, 
security, integrity

Development of 
algorithms and 
modelling tools

Human sensing - the 
quantifi ed worker

Open data principles 
applied to machine 
data

Data visualisation 
and simulation

Data collection - 
knowing what to 
instrument and 
measure

Data certifi cation Handling of 
decentralised data 
sets

Supply chain resilience: 
the ‘interconnected 
ecosystem’

Data integration 
- support data 
catalogues and data 
discovery methods

Data-driven intelligent 
systems

 
Figure 7: Priority action areas
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Design for data
Nowadays it is conventional practice to base engineering design on principles such as ‘design 
for decommissioning’ and ‘design for maintenance’. On a similar basis it is expected that 
‘design for data’ will become important in the future, in recognition that embedded sensors, 
intelligent systems, and data management will form part of the integral design, which needs 
planning at the outset rather than as an add-on. As part of ‘design for data’, consideration 
will need to be given to factors such as what to measure, where to place sensors, choice 
of sensors, sensor development, system integration, interoperability, scalability, computer 
system design, human interface etc. This is where the science of big data meets engineering. 

Codes, standards and data sharing
As more and more data is generated, collected, transmitted, stored and manipulated by 
engineering systems, there is a need for assurance of that data. Potentially, some very big 
decisions will be made on the back of such data, creating the need for codes and standards 
to certify such factors as data quality, traceability, security and integrity. It is also the view of 
the Expert Panel that there could be a role for the Lloyd’s Register Foundation in catalysing 
the evolution of an open data culture applied to data-centric engineering. This would entail 
competitors fi nding economic, environmental, safety and social value in sharing proprietary 
engineering-related data, which is currently held behind fi rewalls, to address global issues. 

Data analytics
This is concerned with the development of algorithms and mathematical models for data 
analysis. It is data analytics that will enable the value of big data to be realised by enabling 
data scientists, predictive modellers and mathematicians to analyse large volumes of 
sensor and other types of data. This will help make more informed decisions leading to 
enhancements in safety, reliability and performance of assets and infrastructure relevant to 
the Foundation.
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Appendix A: Broader perspectives on 
big data in engineering

There is no single perspective on big data. This appendix provides further consideration of 
the wide range of perspectives that will infl uence how successfully big data will impact in the 
engineering-related sectors. 

Big data is an asset
Data gathered at each step in a supply chain can add value to the life cycle of a product 
or process. Tracing components through the supply chain can help feed back data for 
design purposes as well as for warranty and liability. Trends in usage patterns can become 
apparent through data acquired in the supply chain.

Taking this into account and making supply chains ready for data storage, interoperability, 
reuse and analysis leads to a novel perspective - one that we term ‘data-centric 
engineering’. It is a perspective that is prepared for the economic and societal 
opportunities and challenges that arise in a networked world saturated with data. 

Big data in complex engineering scenarios is characterised by a multiplicity of sources 
with different degrees of precision, veracity and completeness across various dimensions. 
The rates and volume of machine acquired data stand in stark contrast to the sparsity 
of manually recorded observations and results from periodic inspection. With manual 
inspection, timescales can be very different and often data is logged intermittently. This 
will continue to be a challenge when monitoring complex machinery. For example, manual 
inspection is expensive, involves downtime and so this will necessarily be performed at 
periodic or discontinuous intervals, yet condition information is pivotal to correlating the 
condition of a machine with the data we analyse. Many of the machines we will want to 
bring into the world of big data will be fi tted with unsatisfactory (by today’s standards) 
‘legacy’ systems. Economics will dictate these are unlikely to be upgraded, therefore data 
sparsity and variability are real-world and on-going challenges for big data practices. 
Whatever big data technology we develop will need to deal with these scenarios in the 
near to mid-term. Retrofi tting increasingly powerful and cheap networked sensor systems 
to legacy machinery may be one solution23. 

23 Modern Machine Shop. Data-Driven Manufacturing Moves Ahead at Mazak, 
   http://www.mmsonline.com/articles/data-driven-manufacturing-moves-ahead-at-mazak  
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Big data is infrastructure
Big data is not just about the data itself but also about the techniques, methods and tools 
that are used in its analysis. We see continuous improvements in affordable high-performance 
computing and large-scale storage capabilities leading to a variety of commercial products 
that offer distributed computation and storage suitable for a variety of analytical tasks that 
can be run in batch mode. It is noteworthy that new methods and tools are being continuously 
developed by open source communities as well as large companies. They are mainly intended 
to overcome the limitations of current methods when it comes to parallel, in-memory 
operations. The types of operations needed in real-time stream processing for example. This 
leads to new trends, new opportunities and a very dynamic market that has to be analysed 
carefully. Not least because of the danger of costly vendor lock in. Once very large amounts of 
data have been migrated into particular systems it is only possible to migrate it at high-cost. 
One reason being that cloud providers charge for data transfer in and out. This is a particularly 
pressing problem when prices are subject to change, so carefully designed contracts are 
needed to circumvent such uncertainties.

In big science projects even current supercomputing approaches are at their limits for the 
largest scientifi c computing problems such as simulations of the human brain. The fastest 
computers are currently able to perform 33 quadrillion fl oating point operations per second 
(petafl ops) but scaling currently comes at a very large cost - not least the cost of energy. A 
2011 study estimated that the all data centres worldwide account for 1.1 to 1.5% of world 
energy consumption24. The burgeoning costs of high volume computing is a principal reason 
why IT companies make large investments into the energy effi ciency of their data centre 
infrastructures.

Innovative cluster and processor architectures are the topic of a number of research initiatives 
worldwide (e.g. the DEEP and DEEP-ER projects funded by the European Commission) and it 
is estimated that the exafl op barrier will be overcome by 2020. But physical supercomputer 
architectures developed in research labs to achieve this goal face real competition from the 
cloud solutions that evolve from the needs of IT companies as part of their daily business. 
Initiatives like the Open Compute Project (OCP)25 show the technical challenges being tackled. 
The OCP approach in which ideas, specifi cations and technologies are shared openly is a 
compelling blueprint for what is needed to maximise innovation in scalable computing.

Hardware architectures will continue to evolve to meet the needs of big data applications. 
Some analytics make particular architectural demands. In the real-time application of high 
performance digital systems for example, various multicore devices are required, each 
addressing a different aspect of the application. Complex algorithms are supported by a digital 
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signal processing core whose internal architecture is matched to certain types of arithmetic 
operation26. 

The Controller Area Network (CAN, also known as CANbus or CAN bus)27 is a microcontroller 
network specifi ed almost 25 years ago. Originally specifi ed as an in-vehicle network for 
passenger cars, CAN is implemented by many microcontroller systems today in transport, 
manufacturing, construction, agriculture, healthcare, communication, retail and fi nance, 
entertainment as well as science. CAN is a central part of the ‘legacy’ infrastructure we face in 
complex engineering. MILCAN is an adaptation of CAN for military vehicle applications28.

In complex engineering scenarios the transmission of data can be a critical bottleneck within 
the data infrastructure. Ships might be in operation at sea for many months, for example. 
The ability to transmit data via satellite might be disrupted intermittently due to bad weather 
conditions. This requires big data architectures that provide a certain level of processing and 
storage capabilities on the vessel. Local sampling can reduce the amount of data that needs to 
be sent immediately for near real-time processing, as is common practice in aviation already. 
The overall amount of captured data is transmitted when the plane touches down or the ship 
reaches port again.

Big data is analytics
In most big data scenarios the existence of data often predates the existence of any model of 
the actual causal processes at work. Analytical methods are therefore needed to derive or infer 
patterns of behaviour and models that account for this behaviour. Data mining, descriptive 
and inferential statistics and machine learning are the most important methods in the big data 
toolbox to fi nd patterns and help construct models. Data mining methods help to fi nd regular 
patterns and similar items in data. Descriptive statistics are necessary to describe general 
properties of samples of data. Inferential statistics are then used to estimate population 
parameters from sample statistics. With machine learning it is possible to learn the best model 
that describes the relation between a number of variables. 

24 Koomey, Jonathan. Growth in data center electricity use 2005 to 2010. A report by Analytical 
   Press, completed at the request of The New York Times (2011). 
25 http://www.opencompute.org/
26 Wiggins, Andrea, and Crowston, Kevin. Developing a conceptual model of virtual organisations 
   for citizen science. International Journal of Organisational Design and Engineering 1.1 
   (2010): 148-162.
27  http://www.can-cia.org/
28 http://www.can-cia.org/fi leadmin/cia/fi les/icc/8/majoewsky.pdf
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One ultimate aim of these methods is to make predictive statements about the system the 
data relates to. Access to the technologies comes at very low costs. Statistical and scientifi c 
programming languages such as R29 or Julia30 are freely available. However, machine 
learning has limitations. There is often the need for labelled data provided by experts and 
engineering know how if we are ultimately to get the results we desire. 

For complex machinery, a general picture of big data collection and analysis involving the 
human in the loop at various stages is illustrated by the example in fi gure 8. There are 
usually sensors on all critical systems of machines which provide measurements relating 
to the machine’s health or condition. Typically, the sensor measurements are processed to 
some degree at the machine level. This data may then be passed off the machine, which 
can be automatic via satellite or wireless technology. This could also be done manually via 
a PC link, data stick or similar. 

This information is then brought together in one place and can be held alongside 
other relevant information such as maintenance logs, operational history, design/build/
manufacture data and many more information sources. Here the machine’s data can 
be further analysed to generate alerts relating to its health, which can then be used to 
direct maintenance actions and aid other operational decisions. Fault diagnosis is a major 
goal of alert generation, although it is not always immediately achievable with complex 
machinery. The data can also be used to provide a fl eet-wide view of the machines. 
Sometimes alerts are only generated at the machine level (e.g. in cars). However collecting 
all the relevant data in one place enables much more to be understood about the 
machines, both individually and collectively. 

The process of alerting and diagnosing from data, directing and getting feedback 
from maintenance is iterative and may also be used to inform design and equipment 
improvements. Finally, the increased knowledge itself becomes part of the big data. 

Even as analytical methods advance continuously and promise increasing automation there 
will always be grand challenges that are impossible to tackle in a purely computational 
fashion. The research challenges addressed by a citizen science approach are one example. 
Here, for example, we fi nd humans recruited and trained to use their exquisitely powerful 
visual systems to classify galaxies, identify wildlife in video footage and the like. This form 
of human machine collaboration is another powerful form of data-driven problem solving 
that needs the computing power of the human cognitive system. The quality assessment 
and repair of open data falls into that category. 
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The big data life cycle is likely to remain a hybrid system, coupling state-of-the-art statistics 
and machine learning with human-based computation as shown in fi gure 8. These kinds 
of socio-technical systems are generally known as social machines31. Research on social 
machines focuses on the patterns of success and failure of existing instances of such 
systems. It also researches how best to align humans and machines in large-scale, data-
driven collaborations.

Machine

Transmit

Feedback

Maintain

in situ
observation

Big data

Notify

Alert

Analyse

Figure 8: Big data collection and analysis: Humans in the loop at various stages of the big data 
life cycle. Credit: Honor Powrie.

29 Team, R. Core. R: A language and environment for statistical computing. (2012), 
   http://cran.case.edu/web/packages/dplR/vignettes/timeseries-dplR.pdf, retrieved 08-11-2014
30 Bezanson, Jeff; Karpinski, Stefan; Shah, Viral B; Edelman, Alan. (2014) Julia: A fresh approach 
   to numerical computing. http://arxiv.org/abs/1411.1607, retrieved 08-11-2014
31  Shadbolt, Nigel R., et al. Towards a classifi cation framework for social machines. Proceedings
    of the 22nd international conference on world wide web companion. International World 
    Wide Web Conferences Steering Committee, 2013; and Hendler, Jim, and Berners-Lee, Tim. 
    From the Semantic Web to social machines: A research challenge for AI on the World Wide Web.
    Artifi cial Intelligence 174.2 (2010): 156-161.
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Big data is complex
Whenever data is analysed it is necessary to carefully consider the difference between 
causation and correlation. A task that becomes even more complex the larger the amount 
of data and the higher its dimensionality (number of variables). The impact of system 
dynamics on cause and effect is important. In engineering applications even very slow 
dynamics are crucial to the analysis and help inform the analytics approach. A variety of 
modelling techniques can be used, such as Petri nets, bond graphs and sometimes simply 
chains of cause and effect.

Complex machinery, typifi ed by engines used in transport applications, are characterised by 
a wide range of dynamics. Sudden and catastrophic failure of a component such as an 
actuator or sensor will cause an instantaneous change in the system behaviour while a 
slow process of wear or the accumulation of deposits in fl ow paths (referred to as fouling) 
produces a correspondingly slow change, but one that can be masked or confounded by 
other slow changes as illustrated by fi gure 9.

In modern internal combustion engine systems, the widespread use of electronic systems 
introduces the potential for the kind of sudden failure associated with electrical systems. 
Loss of a power connection to a component means that its function will simply cease 
within a timescale of the order of tenths of seconds. Often this situation is compensated 
by a second (redundant) system that is either switched in as soon as the failure is detected, 
or is continually monitoring and takes over once failure is detected. Usually in lower costs 
systems, the new status is quickly detected and a ‘limp-home’ mode invoked.

Depending on the failure mode and also how effectively a component is being monitored 
the breakage of a mechanical component can occur after a period of deterioration, but 
the effect is noticeable very quickly. The failure of a fuel supply or the internal components 
of an engine cylinder will lead to a sudden loss of engine performance and a change in its 
vibration patterns. Such changes will be seen within a few engine cycles and in time scales 
of the order of tenths of seconds.

Fouling of fl ow paths within the engine and blockage of heat exchangers can take a 
prolonged period, and would be managed through normal maintenance procedures, 
however exceptional conditions can cause a build up over hours, but a signifi cant change 
in system behaviour may only become apparent over a period of minutes prior to a total 
loss of fl ow. 
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Figure 9: Temporal variability in big data. Credit: Markus Luczak-Roesch.

Changes in the lubrication system are long term and often due to the accumulation 
of planned modifi cations of the oil during its serviceable life. Additives are essentially 
consumed during the operating life of the oil, but such changes are often masked by 
other effects such as the solution of combustion products in the oil. These changes occur 
over hundreds of operating hours, and could be detected in large fl eet applications by a 
comparison between individual engines within the fl eet or by clustering different classes 
of behaviour. In diesel engines, the loss of fuel into the lubricating oil due to a mechanical 
failure could have an effect over days or weeks.
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Another type of timescale in engine systems is the one invoked by changes in fuel. Fuel supplies 
change suddenly – for example between refuelling events. The new fuel may be different 
and will produce a different behaviour. The benefi t of fl eet wide assessment of data enables 
a benchmark performance to be established against which this kind of fault can be assessed. 
It also allows the record to be held for future classifi cation of performance. In a different 
domain, natural gas fuelled engines can be subject to this kind of change. The fuel supplied 
can vary substantially in quality according to the different gases blended and supplied into the 
gas supply system. In this kind of engine, the change is instantaneous with the new fuel.

What this very real engineering example illustrates is that our diagnostic, analytic and 
predictive methods need to be sensitive to a very wide range of temporal patterns many of 
which will have complex and interdependent underlying origins.

Big data is broad
To understand the full picture of big data it is important to account for further varieties of 
data from open to closed, personal to non-personal, task specifi c to ‘exhaust’ data, real time 
to offl ine, or structured to semistructured. This perspective, sometimes called broad data, 
emphasises additional challenges that are associated with the web-scale ecosystem in which 
most modern data-centric applications reside.

Open data is one important part of this picture. Since 2009, both the US and UK governments 
have been making increasing amounts of non-personal public sector data available as open 
data. This is machine readable data that has a licence that says it is open - freely available for 
others to use subject usually only to the requirement of attribution. Increasing numbers of 
governments, regions, cities and organisations both public and private have followed suit. 

In 2012 the European Commission also highlighted the importance of open access to publicly 
funded research and governmental data. Open data was described as the fuel for effective 
research and innovation. The quantity and quality of open data is set to further increase 
as more public and private organisations publish and consume it. The Open Data Institute 
(ODI)32 is demonstrating the wide range of value creation that fl ows from the production and 
consumption of open data. 
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With the emergence of effective data discovery methods, enabled by the uptake of standard 
vocabularies such as schema.org and the improving quality of open data portals like data.
gov.uk, we are seeing open data assume a fundamental role in the data landscape. Open 
data will become an important complementary resource for businesses, which in turn need 
advanced technologies, methods and tools to work with data from such sources, including 
data search and discovery, rapid, ad hoc data integration as well as policies for data use, reuse 
and combination. 

This emphasises the need for data infrastructures, which we argue will need to be powered 
by semantic technologies. These are needed to provide computational approaches that will 
allow researchers and practitioners to search-for and discover data resources, rapidly integrate 
large-scale data collections from heterogeneously collected resources or multiple data sets, 
and compare these results across datasets to allow generation and validation of hypotheses. 
Designing better, automated tools that will allow us to fi nd and reuse data that is currently 
unknown, is necessary to turn data analytics from art to science. Allowing for cross-dataset 
validation, reproducibility studies on data-driven results, and the concomitant citation of data 
products enables recognition for those who curate and share important data resources.

This trend towards open data and open standards is also echoed in specifi c sector developments. 
For example, over the past decade the Operations and Maintenance Information Open 
System Alliance, MIMOSA33, has been dedicated to the development and promotion of open 
information standards for operations and maintenance in manufacturing, fl eet, and facility 
environments. The MIMOSA Open Systems Architecture for Condition Based Maintenance 
(OSA-CBM) defi nes the data interface standards for the different layers of condition-based 
monitoring systems and is widely used in complex engineering. Big data infrastructures in 
engineering have to account for such systems in operation and integrate with them.

Another example for emerging open standards in a broad sector is the Building Information 
Modelling (BIM) framework which provides a digital model of a building in order to make it an 
openly sharable artefact. This promises more effective services for the architecture, engineering 
and construction (AEC) industries when working on joint projects34. BIM is seen as key to the 
delivery of effi cient services over the course of an entire project life cycle.

32 http://theodi.org 
33  http://www.mimosa.org/
34 Azhar, Salman. Building information modeling (BIM): Trends, benefi ts, risks, and challenges 
   for the AEC industry. Leadership and Management in Engineering 11.3 (2011): 241-252.
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Big data is a collective responsibility
Data exchange between businesses, governments and citizens happens with increasing rapidity. 
Despite the examples from the last section many of these exchanges are currently ad hoc. 
For individuals data exchange is not always optional but often obligatory. Whether it is the 
workplace of an employee, a governmental agency consulted by a citizen or when services or 
goods are purchased, data is acquired from the person. The result is that very large amounts 
of personal data travel between different jurisdictions. Much of this is not well regulated and 
may breach confi dentiality and ownership rights. Certainly there is an asymmetry between the 
harvesters of this data such as the large social network or recommender sites and the individuals 
themselves. The current uncertainty and fl ux in this space is one area of concern as big data 
methods and approaches are deployed. It is an area that needs agreed international policies and 
potentially regulation.

The generation of personal data in interactions between citizens and various stakeholders is 
ubiquitous. This makes it necessary to develop broad data literacy amongst citizens. As was 
successfully done for paper records and contracts, this needs to be guided by clear legislation. But 
also the individual is required to adopt the conditions of the digital age and adjust behaviour 
accordingly.

Sensitivity over the ownership and use of data is not just the prerogative of individuals. In 
engineering systems, suppliers of equipment are naturally very careful to protect their intellectual 
property – including the design – of mechanical aspects, hardware and software. For many 
suppliers and OEMs (original equipment manufacturers), data underpins a signifi cant part of 
their revenue and value stream. There will be a concern about opening this up to others. This 
makes the exchange of certain data diffi cult. Independent brokers might be needed that do not 
seek to reverse-engineer design information from data.
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Big data is a central topic for today’s research agendas. While it is not possible to draw a 
complete picture of the very large and dynamically changing global funding landscape, the 
panel identifi ed a number of potential strategic partners for the Lloyd’s Register Foundation, and 
medium-term programmes where complementary funding is viewed as useful.

International bodies focused on codes and standards
ISO, IEC, NIST and IEEE are standards organisations that have recently initiated individual and 
joint study groups on big data. Central to these groups are questions around the unifi cation 
of what defi nes big data and what characterises big data solutions. These organisations also 
work on accelerating the deployment of robust big data solutions by looking at standardisation 
challenges and how big data integrates with currently deployed and standardised architectures 
and technologies.

The maritime sector is one of the Foundation’s strategic application areas. In this sector the 
International Maritime Organization (IMO), as a specialised agency of the United Nations (UN), 
works for the safety and security of shipping and the prevention of marine pollution by ships. 
The IMO is responsible for regulation and standards on an international basis for shipping with 
the goal to reduce risks resulting from compromising on safety, security and environmental 
performance and to encourage innovation. As such it is a partner to leverage certifi cation of 
data-centric engineering approaches to increase supply chain resilience in shipping.

The UN released its data revolution report on 7 November 2014 entitled ‘A World That Counts: 
Mobilising the Data Revolution for Sustainable Development’35 . The report is a call to action 
listing fi ve key recommendations:
1.  Develop a global consensus on principles and standards.
2.  Share technology and innovations for the common good.
3.  New resources for capacity development.
4.  Leadership for co-ordination and mobilisation.
5.  Exploit some quick wins on sustainable development goals (SDG) data.
Engineering-intense industries have a key position for the sustainable future of our planet. This 
report describes the technological and methodological agenda of data-centric engineering. The 
Lloyd’s Register Foundation could be a key partner for the UN as an independent and well-
established organisation in this fi eld.

Appendix B: Big data: partnerships for 
the Lloyd’s Register Foundation

35  United Nations (2014). A World That Counts: Mobilising The Data Revolution for Sustainable 
   Development, http://www.undatarevolution.org/wp-content/uploads/2014/11/A-World-That-
   Counts.pdf, retrieved 07-11-2014.
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This report has emphasised the impact of the Open Data Institute on the global open data 
culture. A signifi cant potential lies in a strategic partnership between the ODI and the Lloyd’s 
Register Foundation in order to enforce a design-for-data culture in engineering disciplines. 

International funding landscape
In order to give a fl avour of the current fi nancial support for big data research and development 
we consider the funding landscape in Europe, the United States and Asia.

Europe
The Excellent Science pillar of the Horizon 2020 work programme is basically targeted at high 
risk research of outstanding individuals or groups in academia. With the European Research 
Council (ERC) and Future and Emerging Technologies (FET) instruments research is funded that 
has the potential to shift boundaries signifi cantly. This is relevant to big data research as it is 
the appropriate programme to develop and evaluate disruptive new computational theories 
and methods or processor architectures. This pillar also supports universities to establish data 
science curricula as part of the Marie Sklodowska-Curie Support Actions and the building of 
computational capabilities for big data under the Research Infrastructures scheme. The second 
pillar - Industrial Leadership - supports collaborative big data research and development. 
Consortia consisting of partners from academia and industry are supported in the Leadership 
in Enabling and Industrial Technologies (LEIT) and Innovation in SME’s funding lines. The third 
pillar is about Europe’s Societal Challenges. It is noteworthy that information and communication 
technology (ICT) topics in general and big data in particular are not only covered by specifi c 
funding schemes. They are regarded as key technologies to solve grand challenges, such as the 
mobility of citizens or goods, energy supply and climate change or food security, health and 
wellbeing. 

Beside the pan-European level the member states of the European Union provide national 
funding for big data research. While most national programmes are quite generic it is 
noteworthy that the German Ministry of Research and Education invests up to 200 million Euro 
in Industry 4.0, the fourth industrial revolution characterised by smart factories and products 
enabling highly fl exible and personalised supply chains that are embedded in complex value 
ecosystems. So called cyber-physical systems are declared to be a key technology, embedded ICT 
systems that are highly interconnected with each other and remote services on the internet. Big 
data, as it is characterised in this report, is a natural component in Industry 4.0 scenarios.
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United States
In contrast to the German funding focus the United States put much more emphasis on social 
media analytics complemented by database research. This results from the success of silicon valley 
industry around the key players Google, Facebook, LinkedIn and Twitter. As security is a common 
driver for US investments in research, the NSF (National Science Foundation) is supporting work 
on cyberinfrastructures, and privacy in a big data context is a big governmental concern and 
widely addressed. Energy funding schemes support advances in exascale computing. There is no 
indicator for a focus on complex engineering and also the materials genome project36 does not 
have any big data components funded.

Asia
In Asia a number of big data centres are currently funded with a strong focus on database and 
infrastructure issues such as large-scale data storage and processing, multimedia and social media 
content analysis. Recently, one can observe a shift towards funding social media analytics. In Asia, 
200 million US dollars will be invested in big data topics beginning in 2016.

36 Materials Genome Initiative, US Federal government http://www.whitehouse.gov/mgi
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